Effects of Semantic Relatedness between Setups and Punchlines in Twitter Hashtag Games

نویسندگان

  • Andrew Cattle
  • Xiaojuan Ma
چکیده

This paper explores humour recognition for Twitter-based hashtag games. Given their popularity, frequency, and relatively formulaic nature, these games make a good target for computational humour research and can leverage Twitter likes and retweets as humour judgments. In this work, we use pairwise relative humour judgments to examine several measures of semantic relatedness between setups and punchlines on a hashtag game corpus we collected and annotated. Results show that perplexity, Normalized Google Distance, and free-word association-based features are all useful in identifying “funnier” hashtag game responses. In fact, we provide empirical evidence that funnier punchlines tend to be more obscure, although more obscure punchlines are not necessarily rated funnier. Furthermore, the asymmetric nature of free-word association features allows us to see that while punchlines should be harder to predict given a setup, they should also be relatively easy to understand in context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach

In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...

متن کامل

On Analyzing Hashtags in Twitter

Hashtags, originally introduced in Twitter, are now becoming the most used way to tag short messages in social networks since this facilitates subsequent search, classification and clustering over those messages. However, extracting information from hashtags is difficult because their composition is not constrained by any (linguistic) rule and they usually appear in short and poorly written mes...

متن کامل

SRHR at SemEval-2017 Task 6: Word Associations for Humour Recognition

This paper explores the role of semantic relatedness features, such as word associations, in humour recognition. Specifically, we examine the task of inferring pairwise humour judgments in Twitter hashtag wars. We examine a variety of word association features derived from the University of Southern Florida Free Association Norms (USF) (Nelson et al., 2004) and the Edinburgh Associative Thesaur...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016